Aerobic ve Anaerobic Yetişkin Kan Kültürü Şişelerinde Izolatlarin Üremesi ve Üreme Sürelerinin Değerlendirilmesi


Özet Görüntüleme: 209 / PDF İndirme: 130

Yazarlar

  • Suat YILDIZ Eskisehir Osmangazi University, Faculty of Medicine, Department of Microbiology
  • Gül DURMAZ Suleyman Demirel University, Faculty of Pharmacy, Department of PharmaceuticalMicrobiology, Isparta
  • Bashar MS İBRAHİM Suleyman Demirel University, Faculty of Pharmacy, Department of PharmaceuticalMicrobiology, Isparta

DOI:

https://doi.org/10.5281/zenodo.7133100%20

Anahtar Kelimeler:

Kan kültürü, Üreme zamanı, Aerobik ve Anaerobik, Koagülaz negatif stafilokoklar, Maya

Özet

Bu çalışmada dolaşım sistemi enfeksiyonlarının en kısa sürede tespitinde aerobik ve anaerobik kan kültürü şişelerinin birlikte kullanılmasının ve alınan kan hacminin etkisinin yorumlanması amaçlandı. Kan kültürleri, standart mikrobiyolojik yöntemlerin yanı sıra BD BACTEC 9240 (Becton Dickinson, ABD) kullanılarak belirlendi. İzolatların aerobik ve anaerobik kan kültürü şişelerinde büyüme ve büyüme süreleri karşılaştırıldı ve ölçüldü. Toplam 11234 kan kültürü şişesinden 8178'i değerlendirildi. 974 (%11.9) kan kültüründe mikrobiyal üreme saptandı. Etken ajan olarak kabul edilen başlıca patojenler koagülaz negatif stafilokoklar 114 (%18), S. aureus 108 (%17,1), Klebsiella spp 86 (%13,6), E. coli 63 (%9,9), maya 45 (%7,1). ) ve Acinetobacter spp 43 (%6,8) tespit edildi. Kan kültürlerinde klinik olarak anlamlı büyüme oranı %6.3; yanlış pozitif ve negatif oranları sırasıyla  %0.2, %0.06 olarak görüldü. Kan kültürü şişelerinde büyütülen klinik olarak anlamlı izolatların %11'inde sadece anaerobik şişede üreme gözlendi. Kullanılan kan kültürü şişelerinden Pseudomonas sp, acinetobacter spp ve mantar üremelerinin büyük kısmı anaerobik şişeye kıyasla aerobik şişede görülmüştür (P <0.05 ). Aerobik ve anaerobik şişelerin ortalama sinyal süreleri sırasıyla 18.5 ve 20.9 saat olarak gözlendi. Tüm bulgular sonucunda Aerobik ve anaerobik kan kültürü şişelerinin birlikte kullanılmasının ve alınan kan hacminin kan dolaşımı enfeksiyonlarının hızlı tespitinde çok değerli olduğu sonucuna varıldı.

Referanslar

Abebaw, Shiferaw, A. A., Tesera, H., Belachew, T., & Mihiretie, G. D. (2018). The bacterial profile and antibiotic susceptibility pattern among patients with suspected bloodstream infections, Gondar, north-west Ethiopia. Pathology and Laboratory Medicine International, Volume 10, 1–7. https://doi.org/10.2147/plmi.s153444

Arabacı, Ç., & Kutlu, O. (2019). Evaluation of microorganisms isolated from blood cultures and their susceptibility profiles to antibiotics in five years period. Journal of Surgery and Medicine. https://doi.org/10.28982/josam.626480

Ateş F, Ciftci N, Tuncer I, Turk Dagi H, (2018). Investigation of antibiotic susceptibility rates and distributions of non-fermentative bacteria isolated from blood cultures. Türk Mikrobiyol Cem Derg, 48(1), 66–71. https://doi.org/ 10.5222/TMCD.2018.066

Bloos, F., Sachse, S., Kortgen, A., Pletz, M. W., Lehmann, M., Straube, E., Riedemann, N. C., Reinhart, K., & Bauer, M. (2012). Evaluation of a Polymerase Chain Reaction Assay for Pathogen Detection in Septic Patients under Routine Condition: An Observational Study. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0046003

Çetin, F., Mumcuoǧlu, I., Aksoy, A., Gürkan, Y., & Aksu, N. (2014). Kan kültürlerinden izole edilen mikroorganizmalar ve antimikrobiyal duyarliliklari. Turk Hijyen ve Deneysel Biyoloji Dergisi, 71(2), 67–74. https://doi.org/10.5505/TurkHijyen.2014.23230

Chen, Y. H., & Hsueh, P. R. (2012). Changing bacteriology of abdominal and surgical sepsis. In Current Opinion in Infectious Diseases (Vol. 25, Issue 5, pp. 590–595). https://doi.org/10.1097/QCO.0b013e32835635cb

Duman, Y., Kuzucu, Ç., Çuolan, S.S. (2011). Bacteria Isolated from Blood Cultures and Their Antimicrobial Susceptibility. Erciyes Medical Journal, 33(3), 189–196. https://www.researchgate.net/publication/266082893

Gaibani, P., Rossini, G., Ambretti, S., Gelsomino, F., Pierro, A. M., Varani, S., Paolucci, M., Landini, M. P., & Sambri, V. (2009). Blood culture systems: rapid detection--how and why? International Journal of Antimicrobial Agents, 34 Suppl 4. https://doi.org/10.1016/s0924-8579(09)70559-x

Gülmez, D., & Gür, D. (2012). Hacettepe Üniversitesi i̇hsan do ǧramacı çocuk hastanesi’nde 2000-2011 yılları arasında kan kültürlerinden i̇zole edilen mikroorganizmalar: 12 yıllık deǧerlendirme. Cocuk Enfeksiyon Dergisi, 6(3), 79–83. https://doi.org/10.5152/ced.2012.25

Hall, K. K., & Lyman, J. A. (2006). Updated review of blood culture contamination. In Clinical Microbiology Reviews (Vol. 19, Issue 4, pp. 788–802). https://doi.org/10.1128/CMR.00062-05

Haque, M., Sartelli, M., McKimm, J., & Bakar, M. A. (2018). Health care-associated infections – An overview. In Infection and Drug Resistance (Vol. 11, pp. 2321–2333). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S177247

Hassoun, A., Linden, P. K., & Friedman, B. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. In Critical care (London, England) (Vol. 21, Issue 1, p. 211). https://doi.org/10.1186/s13054-017-1801-3

Jeverica, S., Sóki, J., Premru, M. M., Nagy, E., & Papst, L. (2019). High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe, 58, 30–34. https://doi.org/10.1016/j.anaerobe.2019.01.011

Johnstone, J., Chen, C., Rosella, L., Adomako, K., Policarpio, M. E., Lam, F., Prematunge, C., Garber, G., Evans, G. A., Gardam, M., Hota, S., John, M., Katz, K., Lemieux, C., McGeer, A., Mertz, D., Muller, M. P., Roth, V., Suh, K. N., & Vearncombe, M. (2018). Patient- and hospital-level predictors of vancomycin-resistant Enterococcus (VRE) bacteremia in Ontario, Canada. American Journal of Infection Control, 46(11), 1266–1271. https://doi.org/10.1016/j.ajic.2018.05.003

Klouche, M., & Schröder, U. (2008). Rapid methods for diagnosis of bloodstream infections. In Clinical Chemistry and Laboratory Medicine (Vol. 46, Issue 7, pp. 888–908). https://doi.org/10.1515/CCLM.2008.157

Lamy, B., Dargère, S., Arendrup, M. C., Parienti, J. J., & Tattevin, P. (2016). How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. In Frontiers in Microbiology (Vol. 7, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2016.00697

Luzzaro, F., Viganò, E. F., Fossati, D., Grossi, A., Sala, A., Sturla, C., Saudelli, M., Toniolo, A., Arghittu, M., Bertinotti, L., Cainarca, M., Guagnellini, E., Facchini, M., Ramella, C., Naldani, D., Nesci, G., Vaiani, R., Sala, R., Montuori, M., … Vitali, A. (2002). Prevalence and drug susceptibility of pathogens causing bloodstream infections in northern Italy: A two-year study in 16 hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 21(12), 849–855. https://doi.org/10.1007/s10096-002-0837-7

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. In Virulence (Vol. 4, Issue 2, pp. 119–128). Taylor and Francis Inc. https://doi.org/10.4161/viru.22913

Mehdinejad, M., Khosravi, A. D., & Morvaridi, A. (2009). P0688 STUDY OF PREVALENCE OF BACTERIA ISOLATED FROM BLOOD CULTURES AND THEIR ANTIMICROBIAL SUSCEPTIBILITY PATTERN. European Journal of Internal Medicine, 20, S225. https://doi.org/10.1016/s0953-6205(09)60707-x

Müderris, T., Yurtsever, S. G., Baran, N., Özdemir, R., Er, H., Güngör, S., Aksoy-Gökmen, A., & Kaya, S. (2019). Microorganisms isolated from blood cultures and the change of their antimicrobial susceptibility patterns in the last five years. Turk Hijyen ve Deneysel Biyoloji Dergisi, 76(3), 231–242. https://doi.org/10.5505/TurkHijyen.2019.65902

Mushtaq, A., Chen, D. J., Strand, G. J., Dylla, B. L., Cole, N. C., Mandrekar, J., & Patel, R. (2016). Clinical significance of coryneform Gram-positive rods from blood identified by MALDI-TOF mass spectrometry and their susceptibility profiles – a retrospective chart review. Diagnostic Microbiology and Infectious Disease, 85(3), 372–376. https://doi.org/10.1016/j.diagmicrobio.2016.04.013

Obara, H., Aikawa, N., Hasegawa, N., Hori, S., Ikeda, Y., Kobayashi, Y., Murata, M., Okamoto, S., Takeda, J., Tanabe, M., Sakakura, Y., Ginba, H., Kitajima, M., & Kitagawa, Y. (2011). The role of a real-time PCR technology for rapid detection and identification of bacterial and fungal pathogens in whole-blood samples. Journal of Infection and Chemotherapy, 17(3), 327–333. https://doi.org/10.1007/s10156-010-0168-z

Paolucci, M., Landini, M. P., & Sambri, V. (2010). Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents, 36(SUPPL. 2). https://doi.org/10.1016/j.ijantimicag.2010.11.010

Pletz, M. W., Wellinghausen, N., & Welte, T. (2011). Will polymerase chain reaction (PCR)-based diagnostics improve outcome in septic patients? A clinical view. In Intensive Care Medicine (Vol. 37, Issue 7, pp. 1069–1076). https://doi.org/10.1007/s00134-011-2245-x

Şirin, M. C., Ağuş, N., Yilmaz, N., Bayram, A., Yilmaz-Hanci, S., Şamlioğlu, P., Karaca-Derici, Y., & Doğan, G. (2017). Yoğun bakim ünitelerinde yatan hastalarin kan kültürlerinden izole edilen mikroorganizmalar ve antibiyotik duyarliliklari. Turk Hijyen ve Deneysel Biyoloji Dergisi, 74(4), 269–278. https://doi.org/10.5505/TurkHijyen.2017.94899

Tsalik, E. L., Jones, D., Nicholson, B., Waring, L., Liesenfeld, O., Park, L. P., Glickman, S. W., Caram, L. B., Langley, R. J., van Velkinburgh, J. C., Cairns, C. B., Rivers, E. P., Otero, R. M., Kingsmore, S. F., Lalani, T., Fowler, V. G., & Woods, C. W. (2010). Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. Journal of Clinical Microbiology, 48(1), 26–33. https://doi.org/10.1128/JCM.01447-09

Venkatesh, M., Flores, A., Luna, R. A., & Versalovic, J. (2010). Molecular microbiological methods in the diagnosis of neonatal sepsis. In Expert Review of Anti-Infective Therapy (Vol. 8, Issue 9, pp. 1037–1048). https://doi.org/10.1586/eri.10.89

Wolk, D. M., & Dunne, W. M. (2011). New technologies in clinical microbiology. Journal of Clinical Microbiology, 49(9 SUPPL.). https://doi.org/10.1128/JCM.00834-11

Yavuz, Y., Yurtseven, N., Aydemir, N. A., Korun, O., & Şimşek Yavuz, S. (2019). Risk Factors for Sepsis Following Congenital Heart Surgery. Journal of Cardio-Vascular-Thoracic Anaesthesia and Intensive Care Society. https://doi.org/10.5222/gkdad.2019.99815

Yiş, R. (2015). Evaluation of blood cultures in a children’s hospital located in Southeastern Anatolia. Turk Pediatri Arsivi, 50(2), 102–107. https://doi.org/10.5152/tpa.2015.2593

Zhou, X., García-Cobos, S., Ruijs, G. J. H. M., Kampinga, G. A., Arends, J. P., Borst, D. M., Möller, L. v., Holman, N. D., Schuurs, T. A., Bruijnesteijn van Coppenraet, L. E., Weel, J. F., van Zeijl, J. H., Köck, R., Rossen, J. W. A., & Friedrich, A. W. (2017). Epidemiology of extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci in the Northern Dutch-German cross-border region. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01914

Yayınlanmış

2022-10-03

Nasıl Atıf Yapılır

YILDIZ, S., DURMAZ , G., & İBRAHİM , B. M. (2022). Aerobic ve Anaerobic Yetişkin Kan Kültürü Şişelerinde Izolatlarin Üremesi ve Üreme Sürelerinin Değerlendirilmesi. GEVHER NESİBE TIP VE SAĞLIK BİLİMLERİ DERGİSİ, 7(20), 1–8. https://doi.org/10.5281/zenodo.7133100

Sayı

Bölüm

Makaleler