CD21 Ligands Provide Better Antibody Specific Response Than The Polyclonal Stimulation in mBCs Activation
Abstract views: 46 / PDF downloads: 39
DOI:
https://doi.org/10.5281/zenodo.14237786Keywords:
Antigen specific memory B cell, CD21, C3d, iC3b, IFNαAbstract
Objective: In this study, we evaluated if the CD21 activation through its free ligands can improve the in vitro assessment of antigen specific antibody response of mBCs.
Methods: Amongst five healthy voluenteer, a volunteer with the highest level of anti-tetanus toxoid IgG (anti TT-IgG) antibody was detected by Enzyme-Linked Immunosorbent Assay (ELISA). The volunteer’s peripheral blood mononuclear cells (PBMNCs) obtained by ficoll method were treated following conditions in vitro; in the group 1) the polyclonal stimulation and CD21 soluble ligands were applied, in the group 2) antigen-specific stimulation by tetanus toxoid (TT) and CD21 soluble ligands were applied, in the group 3) the CD21 soluble ligands C3d, iC3b and IFNα in addition to the polyclonal stimulation and antigen-specific stimulation by TT were applied. Anti-TT-IgG and total IgG antibody quantities were determined in culture supernatants at the end of the day-12 by ELISA.
Results: We found that total IgG antibody levels were higher in the 3th group where the soluble CD21 ligands added to the polyclonal stimulation and TT antigen. CD21 free ligand C3d was observed to increase specific antibody response together with TT antigen-specific stimulation. In addition, antigen-specific antibody responses were different depending on the CD21 free ligands.
Conclusion: Antigen specific stimulation in combination with C3d provided stronger specific antibody responses than polyclonal stimulation. Our data indicate that CD21 free ligands may have a potential in determining specific antibody responses.
References
Abbas AK, L.A., Pillai S. (2012a) B cell activation and antibody production, In Cellular and molecular immunology(Ed, In: Abbas AK, L.A., Pillai S.) Philadelphia, USA, Elsevier Saunders, pp. 243-268.
Abbas AK, L.A., Pillai S. (2012b) Effector mechanisms of humoral immunity., In Cellular and molecular immunology(Ed, In: Abbas AK, L.A., Pillai S.) Philadelphia, USA, Elsevier Saunders, pp. 269-292.
Ahearn, J.M., Fischer, M.B., Croix, D., Goerg, S., Ma, M., Xia, J., Zhou, X., Howard, R.G., Rothstein, T.L., Carroll, M.C. (1996). Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen, Immunity, 4(3), 251-262.
Bouillie, S., Barel, M. and Frade, R. (1999). Signaling through the EBV/C3d receptor (CR2, CD21) in human B lymphocytes: activation of phosphatidylinositol 3-kinase via a CD19-independent pathway, J Immunol, 162(1), 136-143.
Can, O., Gökçe, A.M., Canbakan, M., Ata, P., Sahin, G.M., Titiz, M.I., Apaydın, S. (2016). Evaluation of Pre-Transplant Panel Reactive Antibody Levels and Sensitization: A Single-Center Study. Ann Transplant, 2016. 21: p. 577-81.
Cao, Y., Gordic, M., Kobold, S., Lajmi, N., Meyer, S., Bartels, K., Hildebrandt, Y., Luetkens, T., Ihloff, A.S., Kroger, N., Bokemeyer, C. and Atanackovic, D. (2010). An optimized assay for the enumeration of antigen-specific memory B cells in different compartments of the human body. J Immunol Methods, 358(1-2), 56-65.
Delves, P.J. and Roitt, I.M. (2000a). The immune system. First of two parts. N Engl J Med, 343(1), 37-49.
Delves, P.J. and Roitt, I.M. (2000b). The immune system. Second of two parts. N Engl J Med, 343(2), 108-117.
Franz, B., May, K.F., Dranoff, G., Wucherpfennig, K. (2011). Ex vivo characterization and isolation of rare memory B cells with antigen tetramers. Blood, 118(2), 348-357.
Hebell, T., Ahearn, J.M., Fearon, D.T. (1991). Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science, 254(5028), 102-105.
Jackson, A.M., Lucas, D.P., Melancon, J.K., Desai, N.M. (2011). Clinical relevance and IgG subclass determination of non-HLA antibodies identified using endothelial cell precursors isolated from donor blood. Transplantation, 92(1): p. 54-60.
Jourdan, M., Caraux, A., De Vos, J., Fiol, G., Larroque, M., Cognot, C., Bret, C., Duperray, C., Hose, D. and Klein, B. (2009). An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood, 114(25), 5173-5181.
Lefaucheur, C., Loupy, A., Hill, G.S., Andrade J., Nochy, D., Antoine, C., Gautreau, C., Charron, D., Glotz, D., Boisse C.S. (2010). Preexisting donor-specific HLA antibodies predict outcome in kidney transplantation. Journal of the American Society of Nephrology, 21(8): p. 1398-1406.
Mesquita Junior, D., Araujo, J.A., Catelan, T.T., Souza, A.W., Cruvinel Wde, M., Andrade, L.E. and Silva, N.P. (2010). Immune system - part II: basis of the immunological response mediated by T and B lymphocytes. Rev Bras Reumatol, 50(5), 552-580.
Molina, H., Holers, V.M., Li, B., Fung, Y., Mariathasan, S., Goellner, J., Strauss-Schoenberger, J., Karr, R.W., Chaplin, D.D. (1996). Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A, 93(8), 3357-3361.
Ojo, A.O., Morales, J.M., González, M., Steffick, D.E., Luan, F.L., Merion, R.M., Ojo, T., Moreso, F., Arias, M., Campistol, J.M., Hernandez, D., Seron, D., Scientific Registry of Transplant Recipients and; Spanish Chronic Allograft Study Group (2012). Comparison of the long-term outcomes of kidney transplantation: USA versus Spain. Nephrology Dialysis Transplantation, 28(1): p. 213-220.
Opelz, G. (2005). Non-HLA transplantation immunity revealed by lymphocytotoxic antibodies. Lancet, 2005. 365(9470): p. 1570-6.
Phuong, N.C., Karim Embong, A., Topham, D.J., Sangste, M.Y. (2020). Analysis of antigen-specific human memory B cell populations based on in vitro polyclonal stimulation Curr Protoc Immunol. 2020. 131(1): e109. doi:10.1002/cpim.109.
Qin, D., Wu, J., Carroll, M.C., Burton, G.F., Szakal, A.K., Tew, J.G., Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses. J Immunol, 1998. 161(9): p. 4549-54.
Süsal, C., Roelen, D.L., Fischer, G., Campos, E.F., Gerbase-DeLima, M., Schaub, S., Hönger, G., Lachmann, N., Martorell, J., Claas, F. (2013). Algorithms for the determination of unacceptable HLA antigen mismatches in kidney transplant recipients. Tissue Antigens,. 82(2): p. 83-92.
Tew, J.G., Thomas, S.S., Ranney, R.R. (1987). Fusobacterium nucleatum-mediated immunomodulation of the in vitro secondary antibody response to tetanus toxoid and Actinobacillus actinomycetemcomitans. J Periodontal Res, 22(6): p. 506-12.
Thiel, J., Kimmig, L., Salzer, U., Grudzien, M., Lebrecht, D., Hagena, T., Draeger, R., Voelxen, N., Bergbreiter, A., Jennings, S., Gutenberger, S., Aichem, A., Illges, H., Hannan, J.P., Kienzler, A.K., Rizzi, M., Eibel, H., Peter, H.H., Warnatz, K., Grimbacher, B., Rump, J.A. and Schlesier, M. (2012). Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol, 129(3), 801-810 e806.
Thyphronitis, G., Kinoshita, T., Inoue, K., Schweinle, J.E., Tsokos, G.C., Metcalf, E.S., Finkelman, F.D., Balow, J.E. (1991). Modulation of mouse complement receptors 1 and 2 suppresses antibody responses in vivo., J Immunol, 147(1), 224-230.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 GEVHER NESIBE JOURNAL OF MEDICAL AND HEALTH SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.