Prediction of Pulmonary Function Test Values in COPD Patients Using Artificial Intelligence Architecture- Clinical Decision Support System


Abstract views: 46 / PDF downloads: 29

Authors

  • Filiz ÖZDEMİR
  • Berçem SİNANOĞLU fztbercem.
  • Ayşegül ALTINTOP GEÇKİL
  • Cemile İNCE
  • Davut HANBAY

DOI:

https://doi.org/10.5281/zenodo.14234101

Keywords:

Artificial neural network, Clinical decision support system, COPD

Abstract

Objective: To develop a model that can predict pulmonary function test (PFT) values in individuals with chronic obstructive pulmonary disease (COPD) using an artificial neural network (ANN).   

Method: Levenberg-Marquardt algorithm was used. For performance testing, the ANN was trained using the Mean Sequential Error (MSE) method. While age, sex etc. of the individual were input data, PFT value was output data. The data required to test this model were 29 patients diagnosed with COPD, aged between 40 and 70 years, who were referred to Malatya Training and Research Hospital Chest Diseases Polyclinic. A triple cross validation test was used to calculate the performance of the system. The performance parameter was determined using the accuracy parameter. 

Results:  A triple cross validation test was used to calculate performance of system. Accuracy parameter was used as performance parameter. In designed model, average success rates were determined for each PFT value and total average success rate was evaluated as 97.40%.

Conclusion:  With this system PFT values can be easily determined. It is believed that the system will help in the management of dyspnoea, planning, creating an exercise treatment programme and maintaining quality of life.

 

References

Agustí A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD

Executive Summary. Eur Respir J. 2023;61(4):2300239. Published 2023 Apr 1. doi:10.1183/13993003.00239-2023

Agustí A, Vogelmeier C, Faner R. COPD 2020: changes and challenges. Am J Physiol Lung Cell Mol Physiol.

;319(5):L879-L883. doi:10.1152/ajplung.00429.2020

Akalın, B., & Veranyurt, Ü. (2022). Sağlık Bilimlerinde Yapay Zekâ Tabanlı Klinik Karar Destek

Sistemleri. Gevher Nesıbe Journal Of Medıcal And Health Scıences, 7(18), 64-73. https://doi.org/10.46648/gnj.368

Arslan S, Öztunç G. Kronik obstrüktif akciğer hastalığı ve astım yorgunluk ölçeği’nin geçerlilik ve güvenirliği.

Turkish J Res Dev Nurs. 2013; 1:1– 10

Ashizawa, K., Ishida, T., MacMahon, H., Vyborny, C.J.,Katsuragawa, S., Doi, K., “Artificial Neural Networks in

Chest Radiography: Application to the Differential Diagnosis of Interstitial Lung Disease”, Academic Radiology, Volume 6, Issue 1, Pages 2–9, January 1999. https://doi.org/10.2214/ajr.183.2.1830297

ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-117 https://doi.org/10.1164/ajrccm.166.1.at1102

Ayhan, E. (2011). Astım ve Kronik Obstrüktif Akciğer Hastalığı Uyku Ölçeğinin kronik obstrüktif akciğer

hastalığında geçerlik ve güvenirlik çalışması (Yüksek lisans tezi). Atatürk Üniversitesi, Sağlık Bilimleri Enstitüsü, Erzurum.

Bestall JC, Paul EA, Garrod R. Usefulness of the Medical Research Council (MRC) dyspnea scale as a measure

of disability ›n patients with chronic obstructive pulmonary disease. Thorax 1999; 54:581-86. https://doi.org/10.1136/thx.54.7.581

Bhuvaneswari, C., Aruna, P., Loganathan, D., “A new fusion model for classification of the lung diseases using

genetic algorithm”, Egyptian Informatics Journal, 15.,69–77, 2014. https://doi.org/10.1016/j.eij.2014.05.001

Coppini, G., Miniati, M., Paterni, M., Monti, S., & Ferdeghini, E. M. (2007). Computer-aided diagnosis of

emphysema in COPD patients: neural-network-based analysis of lung shape in digital chest radiographs. Medical engineering & physics, 29(1), 76–86. https://doi.org/10.1016/j.medengphy.2006.02.001

CsikeszNG, GartmanEJ. New developments in the assessment of COPD: early diagnosis is key. Int J Chron

Obstruct Pulmon Dis. 2014; 9:277–286. https://doi.org/10.2147/COPD.S46198

Diab, N., Gershon, A. S., Sin, D. D., Tan, W. C., Bourbeau, J., Boulet, L. P., & Aaron, S. D. (2018). Underdiagnosis

and overdiagnosis of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 198(9), 1130-1139. doi:10.1164/rccm.201804-0621CI

Fischer, A. M., Varga-Szemes, A., van Assen, M., Griffith, L. P., Sahbaee, P., Sperl, J. I., Nance, J. W., & Schoepf,

U. J. (2020). Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing. AJR. American journal of roentgenology, 214(5), 1065–1071. https://doi.org/10.2214/AJR.19.21572

Gawlitza, J., Sturm, T., Spohrer, K., Henzler, T., Akin, I., Schönberg, S., Borggrefe, M., Haubenreisser, H., &

Trinkmann, F. (2019). Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel, Switzerland), 9(1), 33. https://doi.org/10.3390/diagnostics9010033

Global Initiative for Chronic Obstructive Lung Diseases (GOLD). Accessed date: 20.01.2019. Available from

https://goldcopd.org/wp-content/uploads/2018/11/ GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf

González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease Staging and Prognosis in Smokers Using Deep

Learning in Chest Computed Tomography. Am J Respir Crit Care Med. 2018;197(2):193–203. doi:10.1164/rccm.201705-0860OC

Hirai, T. (2021). Pulmonary function tests. Pulmonary Functional Imaging: Basics and Clinical Applications, 11-

https://doi.org/10.1007/978-3-030-43539-4_2

Koç, E., Şengül, Y. A., Özkaya, A. U., & Gökçe, B. (2012). Klinik karar destek sistemleri kullanımına yönelik bir

araştırma: Acıbadem Hastanesi örneği. Tıp Bilişimi Derneği.

Koçyiğit H, Aydemir Ö, Fişek G, Ölmez N, Memiş A. Kısa Form36 (KF36)’nın Türkçe versiyonunun güvenilirliği

ve geçerliliği [Reliability and validity of the Turkish version of short form-36 (SF-36)]. İlaç ve Tedavi Dergisi 1999;12:102-6

Kronik Obstrüktif Akciğer Hastalığı için Küresel Girişim (GOLD) 2023. https://goldcopd.org/2023-gold-report-2/

Kwon, D. S., Choi, Y. J., Kim, T. H., Byun, M. K., Cho, J. H., Kim, H. J., & Park, H. J. (2020). FEF25-75% values

in patients with normal lung function can predict the development of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 2913-2921. https://doi.org/10.2147/COPD.S261732

Metlay, J.P. ve Armstrong, K.A. (2020). Annals Clinical Decision Making: Incorporating Perspective Into Clinical

Decisions, Annals of Internal Medicine, 172(11), 743–746. https://doi.org/10.7326/M19-3469

Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur

Respir J 2005;26:319-38. doi:10.1183/09031936.05.00034805

Okur Kuzu H, Karip A, Aras O, Taşdelen İ, Altun H, Memişoğlu K (2014). Obezite cerrahisi uygulanan kadın

hastaların solunum fonksiyon değişiklikleri. Marmara Medical Journal, 27(1), 32 - 35. DOI: 10.5472/MMJ.2013.03256.1

Ozdemir, F., Ari, A., Kilcik, M. H., Hanbay, D., & Sahin, I. (2020). Prediction of neuropathy, neuropathic pain

and kinesiophobia in patients with type 2 diabetes and design of computerized clinical decision support systems by using artificial intelligence. Medical Hypotheses, 143, 110070. https://doi.org/10.1016/j.mehy.2020.110070

Özalevli S, Uçan ES. Farklı Dispne Skalalarının Kronik Obstrüktif Akciğer Hastalığında Karşılaştırılması. Toraks

Derg 2004; 5:90–4.

Pokrzywinski RF, Meads DM, McKenna SP, Glendenning GA, Revicki DA. Development and psychometric

assessment of the COPD and Asthma Sleep Impact Scale (CASIS). Health and Quality of Life Outcomes 2009:7;1-98 https://doi.org/10.1186/1477-7525-7-98

Revicki DA, Meads DM, McKenna SP, Gale R, Glendenning GA, Pokrzywinski MHA. COPD and asthma fatigue

scale (CAFS): development and psychometric assessment. Health Outcomes Res Med 2010; 1(1): 5-16. http://dx.doi.org/10.1016%2Fj.ehrm.2010.06.001

Sağlam, M., Savcı, S., Vardar Yağlı, N., Çalik kütükçü, E., Arıkan, H., İnal İnce, D., ... & Çöplü, L. (2013). Kronik

obstrüktif akciğer hastalarinda obezitenin solunum kas kuvveti, fonksiyonel kapasite ve fiziksel aktivite düzeyi ile ilişkisi. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turkish Journal of Physiotherapy and Rehabilitation, 24, 1-6.

Soyyiğit, Ş., Erk, M., Güler, N., & Kılınç, G. (2006). Kronik obstrüktif akciğer hastalığında yaşam kalitesinin

belirlenmesinde SF-36 sağlık taramasının değeri. Tüberküloz ve Toraks Dergisi, 54(3), 259-266.

Yorgancıoğlu A, polatlı M, Aydemir Ö, Demirci NY, Kırkıl G, Atış SN, et al. KOAH Değerlendirme Testinin

Türkçe geçerlilik ve güvenilirliği [Reliability and validity of Turkish version of COpD assessment test]. Tuberk Toraks. 2012;60(4):314-20.

Zhou, J., Li, X., Wang, X., Yu, N., & Wang, W. (2022). Accuracy of portable spirometers in the diagnosis of

chronic obstructive pulmonary disease A meta-analysis. NPJ Primary Care Respiratory Medicine, 32(1), 15. https://doi.org/10.1038/s41533-022-00275-x

Downloads

Published

2024-11-29

How to Cite

ÖZDEMİR, F., SİNANOĞLU, B., ALTINTOP GEÇKİL, A., İNCE, C., & HANBAY, D. (2024). Prediction of Pulmonary Function Test Values in COPD Patients Using Artificial Intelligence Architecture- Clinical Decision Support System. GEVHER NESIBE JOURNAL OF MEDICAL AND HEALTH SCIENCES, 9(4), 443–450. https://doi.org/10.5281/zenodo.14234101

Issue

Section

Articles