Evaluation of the Anyplex™ II MTB/MDR/XDR Kit For Rapid Detection of Drug Resistance in Mycobacterium Tuberculosis Complex Strains By Real-Time PCR


Abstract views: 147 / PDF downloads: 41

Authors

  • Emel EKER Çukrova Üniversitesi, Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı, Adana https://orcid.org/0000-0003-1318-0437
  • Toğrul NAĞIYEV Çukrova Üniversitesi, Tıp Fakültesi Tıbbi Mikrobiyoloji Anabilim Dalı, Adana

DOI:

https://doi.org/10.5281/zenodo.10049082

Keywords:

Agar proportion susceptibility method, Extensively Drug Resistance (XDR), Multidrug Resistance (MDR), M. tuberculosis complex (MTBC), Real-Time PCR

Abstract

Objective: The occurrence of the extensively drug-resistant (XDR) strains by improving resistance to second-line anti-tuberculosis (anti-TB) drugs of multidrug-resistant (MDR) Mycobacterium tuberculosis complex (MTBC) strains brings about one of the most important human health threats. For this reason, our study aimed to investigate the performance of the multiplex real-time PCR assay, which can be directly performed on clinical samples and simultaneously determines MTBC and the mutations in rapid diagnosis of MDR and XDR strains.

Methods: The study enrolled two groups: the consecutive 44 MDR-MTBC isolates and the consecutive 50 ARB-positive sputum samples phenotypically diagnosed as MTBC resistant to at least one first-line anti-TB drug. Phenotypically, after the identification of MTBC, the drug susceptibility testing (DST) of the isolates for the first- and second-line anti-TB drugs was performed using the BACTEC MGIT 960 system and Löwenstein-Jensen agar proportion (LJ-AP) method, respectively. Genotypically, MTBC positivity and MDR and XDR status were simultaneously investigated by multiplex real-time PCR assay using the Anyplex™ II MTB/MDR/XDR Detection kit (Seegene).

Results: The results of the phenotypic and genotypic investigations were very consistent. The sensitivity and specificity of the real-time PCR assay in MDR detection were 80% and 100%, respectively, compared with phenotypic methods. Two (4.5%) of the 44 MDR-MTBK isolates were identified as pre-XDR-MTBK by both phenotypic and genotypic methods. It was striking that one of these two pre-XDR strains was ARB negative. Moreover, 18 (40.9%) of the MDR-MTBK isolates were ARB(-).

Conclusion: In conclusion, multiplex Real-Time PCR assay using the Anyplex™ II MTB/MDR/XDR Detection kit was suggested to be a usable and reliable method for the detection of MTBC, MDR and XDR in several hours compared with routinely used time-consuming phenotypic methods. However, MDR- and XDR-MTBC strains can be isolated from ARB(+) as well as ARB(-) samples, and investigation of all clinical samples using multiplex real-time PCR assay is very costly. Therefore, following the MTBC identification using a specific cost-effective PCR-based method, confirmation of MTBC and detection of drug resistance with the multiplex real-time PCR detection kit used in our study will be more convenient in the MTBC-positive samples.

References

Alagna, R., Cabibbe, A. M., Miotto, P., Saluzzo, F., Köser, C. U., Niemann, S.,…Cirillo, D. M. (2021). Is the new WHO definition of extensively drug-resistant tuberculosis easy to apply in practice? Eur Respir J, 58, 2100959. https://doi.org/10.1183/13993003.00959-2021

Alp, A., Sarıbaş, Z. (2019). Klinik örneklerden Mycobacterium tuberculosis saptanmasında Anyplex Mtb/Ntm testinin değerlendirilmesi. Mikrobiyol Bul, 53(4), 355-363.

Aslan, G., Direkel, Ş., Otağ, F., Akdenizli, E., Emekdaş, G. (2006). Mersin Bölgesinde İzole Edilen Mycobacterium tuberculosis Suşlarında Amikasin ve Siprofloksasin Duyarlılığı. ANKEM Derg, 20(3), 164-168

Börekçi, G., Aslan, G., Aydın, E., Fiandaca, M. J., Stender, H., Lee N.M.,…Emekdaş G. (2014). BACTEC MGITTM Pozitif Kültürlerden Mycobacterium Türlerinin Oligo-FISH ve PNA-FISH Yöntemleriyle Tanımlanması. Mikrobiyol Bul, 48(3), 385-401.

Causse, M., Ruiz, P., Gutierrez, J. B., Vaquero, M., Casal M. (2015). New AnyplexTM II MTB/MDR/XDR kit for detection of resistance mutations in M. tuberculosis cultures. Int J Tuberc Lung Dis, 19(12), 1542-1546. https://doi.org/10.5588/ijtld.15.0235

Ceyhan, I., Simsek, H., Arslanturk, A., Albayrak, N., Sezen, F., Tarhan, G. (2014). Extensively Drug-resistant Tuberculosis Strains in National Tuberculosis Reference Laboratory Between 2005 and 2010, Turkey. Clin Microbial, 3(1). DOI: 10.4172/2327-5073.1000136.

Cox, H. S., Niemann, S., Ismailov, G., Doshetov, D., Orozco, J. D., Blok, L.,…Kebede, Y. (2007). Risk of acquired drug resistance during short-course directly observed treatment of tuberculosis in an area with high levels of drug resistance. Clin Infect Dis, 44(11), 1421-1427.

Çetin, E. S., Aynali, A., Öztürk, T., Özseven, A. G., Kaya, S. (2012). Mikobakterilerin klinik ömeklerden izolasyonunda Löwenstein-Jensen besiyeri kültürü ve Bactec Mycobacterium Growth Indicator Tube 960 sisteminin değerlendirilmesi. S.D.Ü. Tıp Fak Derg, 19(1), 12-16.

Drobniewski, F., Rüsch-Gerdes, S., Hoffner, S. (2007). Antimicrobial susceptibility testing of Mycobacterium tuberculosis (EUCAST document E.DEF 8.1) Report of the Subcommittee on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis of the European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Clin Microbiol Infect, 13(12), 1144–1156.

Folkvardsen, D. B., Svensson, E., Thomsen, V., Rasmussen, E. M., Bang, D., Werngren, J.,...Rigouts, L. (2013). Can Molecular Methods Detect 1% Isoniazid Resistance in Mycobacterium tuberculosis? J Clin Microbiol, 51(5), 1596-1599.

Farmer, P. and Kim, J, Y. (1998). Community based approaches to the control of multidrug resistant tuberculosis: Introducing DOTS-plus. Brit Med J, 1998; 317(7159), 671–674.

Georghiou, S. B., Magana, M., Garfein, R. S., Catanzaro, D. G., Catanzaro, A., Rodwell, T. C. (2012). Evaluation of Genetic Mutations Associated with Mycobacterium tuberculosis Resistance to Amikacin, Kanamycin and Capreomycin: A Systematic Review. PLoS ONE, 7(3), e33275. DOI: 10.1371/journal.pone.0033275

Gikalo, M. B., Nosova, E. Y., Krylova, L.Y., Moroz, A. M. (2012). The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother, 67, 2107–2109.

H. Helal, Z., G. El Menofy, N., Abdul-Khalek Ibrahim, Z., Seif El-din Ashour, M., K. Abdulal, A. (2019). Comparatıve Evaluatıon of Anyplex II MTB/MDR/XDR and Resazurin Microtiter Assay For Detection of Drug Resistant Mycobacterium Tuberculosis. J Microbiol Biotech Food Sci, 8(5), 1150-1155. https://doi.org/10.15414/jmbfs.2019.8.5.1150-1155

Igarashi, Y., Chikamatsu, K., Aono, A., Yi, L., Yamada, H., Takaki, A., Mitarai, S. (2017). Laboratory evaluation of the Anyplex™ II MTB/MDR and MTB/XDR tests based on multiplex real-time PCR and melting-temperature analysis to identify Mycobacterium tuberculosis and drug resistance. Diagnostic Microbiology and Infectious Disease, 89(4), 276-281. https://doi.org/10.1016/j.diagmicrobio.2017.08.016

Katamba, A., Ssengooba, W., Sserubiri, J., Semugenze, D., Kasule, G. W., Nyombi, A.,…Joloba, M. L. (2023). Evaluation of Xpert MTB/XDR test for susceptibility testing of Mycobacterium tuberculosis to first and second-line drugs in Uganda. PLoS ONE, 18(8), e0284545. https://doi.org/10.1371/journal.pone.0284545

Lange, C., Abubakar, I., Alffenaar, J. W. C., Bothamley, G., Caminero, J. A., Carvalho, A. C. C.,...Cirillo, D. M. (2014). Management of patients with multidrugresistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur Respir J, 44(1), 23–63

Laurenzo, D., Mousa, S. A. (2011). Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta Tropica, 119, 5–10.

Migliori, G. B., Zellweger, J. P., Abubakar, I., Ibraim, E., Caminero, J. A., De Vries, G.,…Manissero, D. (2012). European Union standards for tuberculosis care. Eur Respir J, 39(4), 807–819.

Pillay, S., Steingart, K. R., Davies, G. R., Chaplin, M., De Vos, M., Schumacher, S. G.,…Theron, G. (2022). Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database of Systematic Reviews, (5). https://doi.org/10.1002/14651858.CD014841.pub2

Rodrigues, L., Villellas, C., Bailo, R., Viveiros, M., Aínsa, J. A. (2013). Role of the Mmr Efflux Pump in Drug Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 57(2), 751-757.

Satana, D., Coban, A. Y., Uzun, M. (2010) Testing Susceptibility of Multidrug-Resistant Mycobacterium tuberculosis to Second-Line Drugs by Use of Blood Agar. Journal Of Clinical Microbiology, 48(11), 4291–4293.

Stop TB Partnership and World Heath Organization. (2006). The Global Plan to Stop TB 2006–2015. Geneva, World Health Organization.

Tekin, K., Albay, A., Simsek, H., Sig, A. K., Guney, M. (2017). Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drugresistant Tuberculosis Cases, Eurasian J Med, 49, 183-187.

World Health Organization (2022). Global tuberculosis report 2022. Geneva, Switzerland, World Health Organization. Licence: CC BY-NC-SA 3.0 IGO. 20 Temmuz 2023 tarihinde https://www.who.int/publications/i/item/9789240061729 adresinden erişildi.

Published

2023-10-28

How to Cite

EKER , E., & NAĞIYEV , T. (2023). Evaluation of the Anyplex™ II MTB/MDR/XDR Kit For Rapid Detection of Drug Resistance in Mycobacterium Tuberculosis Complex Strains By Real-Time PCR. GEVHER NESIBE JOURNAL OF MEDICAL AND HEALTH SCIENCES, 8(4), 1148–1162. https://doi.org/10.5281/zenodo.10049082

Issue

Section

Articles