Prediction of Pulmonary Function Test Values in COPD Patients Using Artificial Intelligence Architecture- Clinical Decision Support System
Abstract views: 88 / PDF downloads: 47
DOI:
https://doi.org/10.5281/zenodo.14234101Keywords:
Artificial neural network, Clinical decision support system, COPDAbstract
Objective: To develop a model that can predict pulmonary function test (PFT) values in individuals with chronic obstructive pulmonary disease (COPD) using an artificial neural network (ANN).
Method: Levenberg-Marquardt algorithm was used. For performance testing, the ANN was trained using the Mean Sequential Error (MSE) method. While age, sex etc. of the individual were input data, PFT value was output data. The data required to test this model were 29 patients diagnosed with COPD, aged between 40 and 70 years, who were referred to Malatya Training and Research Hospital Chest Diseases Polyclinic. A triple cross validation test was used to calculate the performance of the system. The performance parameter was determined using the accuracy parameter.
Results: A triple cross validation test was used to calculate performance of system. Accuracy parameter was used as performance parameter. In designed model, average success rates were determined for each PFT value and total average success rate was evaluated as 97.40%.
Conclusion: With this system PFT values can be easily determined. It is believed that the system will help in the management of dyspnoea, planning, creating an exercise treatment programme and maintaining quality of life.
References
Agustí A, Celli BR, Criner GJ, et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD
Executive Summary. Eur Respir J. 2023;61(4):2300239. Published 2023 Apr 1. doi:10.1183/13993003.00239-2023
Agustí A, Vogelmeier C, Faner R. COPD 2020: changes and challenges. Am J Physiol Lung Cell Mol Physiol.
;319(5):L879-L883. doi:10.1152/ajplung.00429.2020
Akalın, B., & Veranyurt, Ü. (2022). Sağlık Bilimlerinde Yapay Zekâ Tabanlı Klinik Karar Destek
Sistemleri. Gevher Nesıbe Journal Of Medıcal And Health Scıences, 7(18), 64-73. https://doi.org/10.46648/gnj.368
Arslan S, Öztunç G. Kronik obstrüktif akciğer hastalığı ve astım yorgunluk ölçeği’nin geçerlilik ve güvenirliği.
Turkish J Res Dev Nurs. 2013; 1:1– 10
Ashizawa, K., Ishida, T., MacMahon, H., Vyborny, C.J.,Katsuragawa, S., Doi, K., “Artificial Neural Networks in
Chest Radiography: Application to the Differential Diagnosis of Interstitial Lung Disease”, Academic Radiology, Volume 6, Issue 1, Pages 2–9, January 1999. https://doi.org/10.2214/ajr.183.2.1830297
ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166(1):111-117 https://doi.org/10.1164/ajrccm.166.1.at1102
Ayhan, E. (2011). Astım ve Kronik Obstrüktif Akciğer Hastalığı Uyku Ölçeğinin kronik obstrüktif akciğer
hastalığında geçerlik ve güvenirlik çalışması (Yüksek lisans tezi). Atatürk Üniversitesi, Sağlık Bilimleri Enstitüsü, Erzurum.
Bestall JC, Paul EA, Garrod R. Usefulness of the Medical Research Council (MRC) dyspnea scale as a measure
of disability ›n patients with chronic obstructive pulmonary disease. Thorax 1999; 54:581-86. https://doi.org/10.1136/thx.54.7.581
Bhuvaneswari, C., Aruna, P., Loganathan, D., “A new fusion model for classification of the lung diseases using
genetic algorithm”, Egyptian Informatics Journal, 15.,69–77, 2014. https://doi.org/10.1016/j.eij.2014.05.001
Coppini, G., Miniati, M., Paterni, M., Monti, S., & Ferdeghini, E. M. (2007). Computer-aided diagnosis of
emphysema in COPD patients: neural-network-based analysis of lung shape in digital chest radiographs. Medical engineering & physics, 29(1), 76–86. https://doi.org/10.1016/j.medengphy.2006.02.001
CsikeszNG, GartmanEJ. New developments in the assessment of COPD: early diagnosis is key. Int J Chron
Obstruct Pulmon Dis. 2014; 9:277–286. https://doi.org/10.2147/COPD.S46198
Diab, N., Gershon, A. S., Sin, D. D., Tan, W. C., Bourbeau, J., Boulet, L. P., & Aaron, S. D. (2018). Underdiagnosis
and overdiagnosis of chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine, 198(9), 1130-1139. doi:10.1164/rccm.201804-0621CI
Fischer, A. M., Varga-Szemes, A., van Assen, M., Griffith, L. P., Sahbaee, P., Sperl, J. I., Nance, J. W., & Schoepf,
U. J. (2020). Comparison of Artificial Intelligence-Based Fully Automatic Chest CT Emphysema Quantification to Pulmonary Function Testing. AJR. American journal of roentgenology, 214(5), 1065–1071. https://doi.org/10.2214/AJR.19.21572
Gawlitza, J., Sturm, T., Spohrer, K., Henzler, T., Akin, I., Schönberg, S., Borggrefe, M., Haubenreisser, H., &
Trinkmann, F. (2019). Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics (Basel, Switzerland), 9(1), 33. https://doi.org/10.3390/diagnostics9010033
Global Initiative for Chronic Obstructive Lung Diseases (GOLD). Accessed date: 20.01.2019. Available from
https://goldcopd.org/wp-content/uploads/2018/11/ GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf
González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease Staging and Prognosis in Smokers Using Deep
Learning in Chest Computed Tomography. Am J Respir Crit Care Med. 2018;197(2):193–203. doi:10.1164/rccm.201705-0860OC
Hirai, T. (2021). Pulmonary function tests. Pulmonary Functional Imaging: Basics and Clinical Applications, 11-
https://doi.org/10.1007/978-3-030-43539-4_2
Koç, E., Şengül, Y. A., Özkaya, A. U., & Gökçe, B. (2012). Klinik karar destek sistemleri kullanımına yönelik bir
araştırma: Acıbadem Hastanesi örneği. Tıp Bilişimi Derneği.
Koçyiğit H, Aydemir Ö, Fişek G, Ölmez N, Memiş A. Kısa Form36 (KF36)’nın Türkçe versiyonunun güvenilirliği
ve geçerliliği [Reliability and validity of the Turkish version of short form-36 (SF-36)]. İlaç ve Tedavi Dergisi 1999;12:102-6
Kronik Obstrüktif Akciğer Hastalığı için Küresel Girişim (GOLD) 2023. https://goldcopd.org/2023-gold-report-2/
Kwon, D. S., Choi, Y. J., Kim, T. H., Byun, M. K., Cho, J. H., Kim, H. J., & Park, H. J. (2020). FEF25-75% values
in patients with normal lung function can predict the development of chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 2913-2921. https://doi.org/10.2147/COPD.S261732
Metlay, J.P. ve Armstrong, K.A. (2020). Annals Clinical Decision Making: Incorporating Perspective Into Clinical
Decisions, Annals of Internal Medicine, 172(11), 743–746. https://doi.org/10.7326/M19-3469
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur
Respir J 2005;26:319-38. doi:10.1183/09031936.05.00034805
Okur Kuzu H, Karip A, Aras O, Taşdelen İ, Altun H, Memişoğlu K (2014). Obezite cerrahisi uygulanan kadın
hastaların solunum fonksiyon değişiklikleri. Marmara Medical Journal, 27(1), 32 - 35. DOI: 10.5472/MMJ.2013.03256.1
Ozdemir, F., Ari, A., Kilcik, M. H., Hanbay, D., & Sahin, I. (2020). Prediction of neuropathy, neuropathic pain
and kinesiophobia in patients with type 2 diabetes and design of computerized clinical decision support systems by using artificial intelligence. Medical Hypotheses, 143, 110070. https://doi.org/10.1016/j.mehy.2020.110070
Özalevli S, Uçan ES. Farklı Dispne Skalalarının Kronik Obstrüktif Akciğer Hastalığında Karşılaştırılması. Toraks
Derg 2004; 5:90–4.
Pokrzywinski RF, Meads DM, McKenna SP, Glendenning GA, Revicki DA. Development and psychometric
assessment of the COPD and Asthma Sleep Impact Scale (CASIS). Health and Quality of Life Outcomes 2009:7;1-98 https://doi.org/10.1186/1477-7525-7-98
Revicki DA, Meads DM, McKenna SP, Gale R, Glendenning GA, Pokrzywinski MHA. COPD and asthma fatigue
scale (CAFS): development and psychometric assessment. Health Outcomes Res Med 2010; 1(1): 5-16. http://dx.doi.org/10.1016%2Fj.ehrm.2010.06.001
Sağlam, M., Savcı, S., Vardar Yağlı, N., Çalik kütükçü, E., Arıkan, H., İnal İnce, D., ... & Çöplü, L. (2013). Kronik
obstrüktif akciğer hastalarinda obezitenin solunum kas kuvveti, fonksiyonel kapasite ve fiziksel aktivite düzeyi ile ilişkisi. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turkish Journal of Physiotherapy and Rehabilitation, 24, 1-6.
Soyyiğit, Ş., Erk, M., Güler, N., & Kılınç, G. (2006). Kronik obstrüktif akciğer hastalığında yaşam kalitesinin
belirlenmesinde SF-36 sağlık taramasının değeri. Tüberküloz ve Toraks Dergisi, 54(3), 259-266.
Yorgancıoğlu A, polatlı M, Aydemir Ö, Demirci NY, Kırkıl G, Atış SN, et al. KOAH Değerlendirme Testinin
Türkçe geçerlilik ve güvenilirliği [Reliability and validity of Turkish version of COpD assessment test]. Tuberk Toraks. 2012;60(4):314-20.
Zhou, J., Li, X., Wang, X., Yu, N., & Wang, W. (2022). Accuracy of portable spirometers in the diagnosis of
chronic obstructive pulmonary disease A meta-analysis. NPJ Primary Care Respiratory Medicine, 32(1), 15. https://doi.org/10.1038/s41533-022-00275-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 GEVHER NESIBE JOURNAL OF MEDICAL AND HEALTH SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.