Growth and Growth Time Evaluation of Isolates in Aerobic and Anaerobic Adult Blood Culture Bottles


Abstract views: 212 / PDF downloads: 134

Authors

  • Suat YILDIZ Eskisehir Osmangazi University, Faculty of Medicine, Department of Microbiology
  • Gül DURMAZ Suleyman Demirel University, Faculty of Pharmacy, Department of PharmaceuticalMicrobiology, Isparta
  • Bashar MS İBRAHİM Suleyman Demirel University, Faculty of Pharmacy, Department of PharmaceuticalMicrobiology, Isparta

DOI:

https://doi.org/10.5281/zenodo.7133100%20

Keywords:

Blood culture, Reproduction time, AerobicandAnaerobic, Coagulasenegativestaphylococci, Yeast

Abstract

In this study, we aimed to interpret the effect of using aerobic and anaerobic blood culture bottles together and the blood volume taken in the detection of circulatory system infections as soon as possible. Blood cultures were determined using BD BACTEC 9240 (Becton Dickinson, USA) as well as standard microbiological methods. The growth and growth times of isolates in aerobic and anaerobic blood culture bottles were compared and measured. 8178 out of a total of 11234 blood culture bottles were evaluated. Microbial growth was detected in 974 (11.9%) blood cultures. The main pathogens considered causative agents are coagulase-negative staphylococci 114 (18%), S. aureus 108 (17.1%), Klebsiella spp 86 (13.6%)., E. coli 63 (9.9%)., yeast 45 (7.1%)., and Acinetobacter spp 43 (6.8%)  were detected. The clinically significant growth rate in blood cultures was 6.3%. While the false positive rate was 0.2%, the false-negative rate was 0.06%. In 11% of clinically significant isolates grown in blood culture bottles, growth was observed only in the anaerobic bottle. Most of the growth of Acinetobacter spp, Pseudomonas sp and yeast were detected in the aerobic bottle compared to the anaerobic bottle (P<0.05). Mean positive signal times were 18.5 and 20.9 hours for aerobic and anaerobic bottles, respectively. It has been concluded that the combined use of aerobic and anaerobic blood culture bottles and the volume of blood drawn are invaluable in the rapid detection of bloodstream infections.

References

Abebaw, Shiferaw, A. A., Tesera, H., Belachew, T., & Mihiretie, G. D. (2018). The bacterial profile and antibiotic susceptibility pattern among patients with suspected bloodstream infections, Gondar, north-west Ethiopia. Pathology and Laboratory Medicine International, Volume 10, 1–7. https://doi.org/10.2147/plmi.s153444

Arabacı, Ç., & Kutlu, O. (2019). Evaluation of microorganisms isolated from blood cultures and their susceptibility profiles to antibiotics in five years period. Journal of Surgery and Medicine. https://doi.org/10.28982/josam.626480

Ateş F, Ciftci N, Tuncer I, Turk Dagi H, (2018). Investigation of antibiotic susceptibility rates and distributions of non-fermentative bacteria isolated from blood cultures. Türk Mikrobiyol Cem Derg, 48(1), 66–71. https://doi.org/ 10.5222/TMCD.2018.066

Bloos, F., Sachse, S., Kortgen, A., Pletz, M. W., Lehmann, M., Straube, E., Riedemann, N. C., Reinhart, K., & Bauer, M. (2012). Evaluation of a Polymerase Chain Reaction Assay for Pathogen Detection in Septic Patients under Routine Condition: An Observational Study. PLoS ONE, 7(9). https://doi.org/10.1371/journal.pone.0046003

Çetin, F., Mumcuoǧlu, I., Aksoy, A., Gürkan, Y., & Aksu, N. (2014). Kan kültürlerinden izole edilen mikroorganizmalar ve antimikrobiyal duyarliliklari. Turk Hijyen ve Deneysel Biyoloji Dergisi, 71(2), 67–74. https://doi.org/10.5505/TurkHijyen.2014.23230

Chen, Y. H., & Hsueh, P. R. (2012). Changing bacteriology of abdominal and surgical sepsis. In Current Opinion in Infectious Diseases (Vol. 25, Issue 5, pp. 590–595). https://doi.org/10.1097/QCO.0b013e32835635cb

Duman, Y., Kuzucu, Ç., Çuolan, S.S. (2011). Bacteria Isolated from Blood Cultures and Their Antimicrobial Susceptibility. Erciyes Medical Journal, 33(3), 189–196. https://www.researchgate.net/publication/266082893

Gaibani, P., Rossini, G., Ambretti, S., Gelsomino, F., Pierro, A. M., Varani, S., Paolucci, M., Landini, M. P., & Sambri, V. (2009). Blood culture systems: rapid detection--how and why? International Journal of Antimicrobial Agents, 34 Suppl 4. https://doi.org/10.1016/s0924-8579(09)70559-x

Gülmez, D., & Gür, D. (2012). Hacettepe Üniversitesi i̇hsan do ǧramacı çocuk hastanesi’nde 2000-2011 yılları arasında kan kültürlerinden i̇zole edilen mikroorganizmalar: 12 yıllık deǧerlendirme. Cocuk Enfeksiyon Dergisi, 6(3), 79–83. https://doi.org/10.5152/ced.2012.25

Hall, K. K., & Lyman, J. A. (2006). Updated review of blood culture contamination. In Clinical Microbiology Reviews (Vol. 19, Issue 4, pp. 788–802). https://doi.org/10.1128/CMR.00062-05

Haque, M., Sartelli, M., McKimm, J., & Bakar, M. A. (2018). Health care-associated infections – An overview. In Infection and Drug Resistance (Vol. 11, pp. 2321–2333). Dove Medical Press Ltd. https://doi.org/10.2147/IDR.S177247

Hassoun, A., Linden, P. K., & Friedman, B. (2017). Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. In Critical care (London, England) (Vol. 21, Issue 1, p. 211). https://doi.org/10.1186/s13054-017-1801-3

Jeverica, S., Sóki, J., Premru, M. M., Nagy, E., & Papst, L. (2019). High prevalence of division II (cfiA positive) isolates among blood stream Bacteroides fragilis in Slovenia as determined by MALDI-TOF MS. Anaerobe, 58, 30–34. https://doi.org/10.1016/j.anaerobe.2019.01.011

Johnstone, J., Chen, C., Rosella, L., Adomako, K., Policarpio, M. E., Lam, F., Prematunge, C., Garber, G., Evans, G. A., Gardam, M., Hota, S., John, M., Katz, K., Lemieux, C., McGeer, A., Mertz, D., Muller, M. P., Roth, V., Suh, K. N., & Vearncombe, M. (2018). Patient- and hospital-level predictors of vancomycin-resistant Enterococcus (VRE) bacteremia in Ontario, Canada. American Journal of Infection Control, 46(11), 1266–1271. https://doi.org/10.1016/j.ajic.2018.05.003

Klouche, M., & Schröder, U. (2008). Rapid methods for diagnosis of bloodstream infections. In Clinical Chemistry and Laboratory Medicine (Vol. 46, Issue 7, pp. 888–908). https://doi.org/10.1515/CCLM.2008.157

Lamy, B., Dargère, S., Arendrup, M. C., Parienti, J. J., & Tattevin, P. (2016). How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. In Frontiers in Microbiology (Vol. 7, Issue MAY). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2016.00697

Luzzaro, F., Viganò, E. F., Fossati, D., Grossi, A., Sala, A., Sturla, C., Saudelli, M., Toniolo, A., Arghittu, M., Bertinotti, L., Cainarca, M., Guagnellini, E., Facchini, M., Ramella, C., Naldani, D., Nesci, G., Vaiani, R., Sala, R., Montuori, M., … Vitali, A. (2002). Prevalence and drug susceptibility of pathogens causing bloodstream infections in northern Italy: A two-year study in 16 hospitals. European Journal of Clinical Microbiology and Infectious Diseases, 21(12), 849–855. https://doi.org/10.1007/s10096-002-0837-7

Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. In Virulence (Vol. 4, Issue 2, pp. 119–128). Taylor and Francis Inc. https://doi.org/10.4161/viru.22913

Mehdinejad, M., Khosravi, A. D., & Morvaridi, A. (2009). P0688 STUDY OF PREVALENCE OF BACTERIA ISOLATED FROM BLOOD CULTURES AND THEIR ANTIMICROBIAL SUSCEPTIBILITY PATTERN. European Journal of Internal Medicine, 20, S225. https://doi.org/10.1016/s0953-6205(09)60707-x

Müderris, T., Yurtsever, S. G., Baran, N., Özdemir, R., Er, H., Güngör, S., Aksoy-Gökmen, A., & Kaya, S. (2019). Microorganisms isolated from blood cultures and the change of their antimicrobial susceptibility patterns in the last five years. Turk Hijyen ve Deneysel Biyoloji Dergisi, 76(3), 231–242. https://doi.org/10.5505/TurkHijyen.2019.65902

Mushtaq, A., Chen, D. J., Strand, G. J., Dylla, B. L., Cole, N. C., Mandrekar, J., & Patel, R. (2016). Clinical significance of coryneform Gram-positive rods from blood identified by MALDI-TOF mass spectrometry and their susceptibility profiles – a retrospective chart review. Diagnostic Microbiology and Infectious Disease, 85(3), 372–376. https://doi.org/10.1016/j.diagmicrobio.2016.04.013

Obara, H., Aikawa, N., Hasegawa, N., Hori, S., Ikeda, Y., Kobayashi, Y., Murata, M., Okamoto, S., Takeda, J., Tanabe, M., Sakakura, Y., Ginba, H., Kitajima, M., & Kitagawa, Y. (2011). The role of a real-time PCR technology for rapid detection and identification of bacterial and fungal pathogens in whole-blood samples. Journal of Infection and Chemotherapy, 17(3), 327–333. https://doi.org/10.1007/s10156-010-0168-z

Paolucci, M., Landini, M. P., & Sambri, V. (2010). Conventional and molecular techniques for the early diagnosis of bacteraemia. International Journal of Antimicrobial Agents, 36(SUPPL. 2). https://doi.org/10.1016/j.ijantimicag.2010.11.010

Pletz, M. W., Wellinghausen, N., & Welte, T. (2011). Will polymerase chain reaction (PCR)-based diagnostics improve outcome in septic patients? A clinical view. In Intensive Care Medicine (Vol. 37, Issue 7, pp. 1069–1076). https://doi.org/10.1007/s00134-011-2245-x

Şirin, M. C., Ağuş, N., Yilmaz, N., Bayram, A., Yilmaz-Hanci, S., Şamlioğlu, P., Karaca-Derici, Y., & Doğan, G. (2017). Yoğun bakim ünitelerinde yatan hastalarin kan kültürlerinden izole edilen mikroorganizmalar ve antibiyotik duyarliliklari. Turk Hijyen ve Deneysel Biyoloji Dergisi, 74(4), 269–278. https://doi.org/10.5505/TurkHijyen.2017.94899

Tsalik, E. L., Jones, D., Nicholson, B., Waring, L., Liesenfeld, O., Park, L. P., Glickman, S. W., Caram, L. B., Langley, R. J., van Velkinburgh, J. C., Cairns, C. B., Rivers, E. P., Otero, R. M., Kingsmore, S. F., Lalani, T., Fowler, V. G., & Woods, C. W. (2010). Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. Journal of Clinical Microbiology, 48(1), 26–33. https://doi.org/10.1128/JCM.01447-09

Venkatesh, M., Flores, A., Luna, R. A., & Versalovic, J. (2010). Molecular microbiological methods in the diagnosis of neonatal sepsis. In Expert Review of Anti-Infective Therapy (Vol. 8, Issue 9, pp. 1037–1048). https://doi.org/10.1586/eri.10.89

Wolk, D. M., & Dunne, W. M. (2011). New technologies in clinical microbiology. Journal of Clinical Microbiology, 49(9 SUPPL.). https://doi.org/10.1128/JCM.00834-11

Yavuz, Y., Yurtseven, N., Aydemir, N. A., Korun, O., & Şimşek Yavuz, S. (2019). Risk Factors for Sepsis Following Congenital Heart Surgery. Journal of Cardio-Vascular-Thoracic Anaesthesia and Intensive Care Society. https://doi.org/10.5222/gkdad.2019.99815

Yiş, R. (2015). Evaluation of blood cultures in a children’s hospital located in Southeastern Anatolia. Turk Pediatri Arsivi, 50(2), 102–107. https://doi.org/10.5152/tpa.2015.2593

Zhou, X., García-Cobos, S., Ruijs, G. J. H. M., Kampinga, G. A., Arends, J. P., Borst, D. M., Möller, L. v., Holman, N. D., Schuurs, T. A., Bruijnesteijn van Coppenraet, L. E., Weel, J. F., van Zeijl, J. H., Köck, R., Rossen, J. W. A., & Friedrich, A. W. (2017). Epidemiology of extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci in the Northern Dutch-German cross-border region. Frontiers in Microbiology, 8(OCT). https://doi.org/10.3389/fmicb.2017.01914

Downloads

Published

2022-10-03

How to Cite

YILDIZ, S., DURMAZ , G., & İBRAHİM , B. M. (2022). Growth and Growth Time Evaluation of Isolates in Aerobic and Anaerobic Adult Blood Culture Bottles. GEVHER NESIBE JOURNAL OF MEDICAL AND HEALTH SCIENCES, 7(20), 1–8. https://doi.org/10.5281/zenodo.7133100

Issue

Section

Articles